Перевод: с русского на английский

с английского на русский

механизм потерь

  • 1 механизм потерь

    Geophysics: loss mechanism

    Универсальный русско-английский словарь > механизм потерь

  • 2 механизм потерь

    Русско-английский физический словарь > механизм потерь

  • 3 механизм

    м.
    - бетатронный механизм ускорения
    - выключающий механизм
    - градиентный механизм возбуждения колебаний
    - двухступенчатый механизм
    - диссипативный механизм ускорения
    - диффузионно-вакансионный механизм
    - доминирующий механизм
    - загрузочный механизм
    - захватывающий механизм
    - исполнительный механизм
    - каскадный механизм
    - классический механизм теплопроводности
    - комптоновский механизм
    - конкурирующий механизм
    - магнитоэлектрический механизм
    - механизм аварийной остановки
    - механизм адгезионного изнашивания
    - механизм Ахиезера
    - механизм быстрой остановки
    - механизм Вольмера - Вебера
    - механизм вспышки
    - механизм выброса плазмы
    - механизм группировки
    - механизм декорреляции
    - механизм диссипации
    - механизм диффузии
    - механизм для смены образцов
    - механизм для транспортировки образцов
    - механизм загрузки топлива
    - механизм затухания
    - механизм землетрясения
    - механизм измерительного прибора
    - механизм изнашивания
    - механизм кавитации
    - механизм кипения
    - механизм коэрцитивности
    - механизм Крастанова
    - механизм Ландау - Румера
    - механизм Ландау
    - механизм оптической ориентации спинов
    - механизм переноса
    - механизм Петчека
    - механизм потерь
    - механизм пробоя
    - механизм радиоизлучения
    - механизм разрушения
    - механизм рассеяния
    - механизм рождения частиц
    - механизм роста пар-жидкость-кристалл
    - механизм роста
    - механизм сбрасывания стоп-стержня
    - механизм Свита
    - механизм смены ядерного топлива
    - механизм смешивания фаз
    - механизм спиновой релаксации
    - механизм Странского - Крастанова
    - механизм Странского
    - механизм теплопередачи
    - механизм теплопроводности
    - механизм турбулизации пограничного слоя
    - механизм турбулизации следа за обтекаемым конечным телом
    - механизм увеличения энергии во вспышке
    - механизм упрочнения
    - механизм ускорения ионов в электромагнитном поле
    - механизм ускорения ионов самосогласованным электрическим полем
    - механизм ускорения плазмы в электромагнитном поле
    - механизм ускорения Ферми
    - механизм ускорения частиц
    - механизм Ферми
    - механизм Франка - Ван-дер-Мерве
    - механизм Хиггса
    - механизм Чепмена
    - механизм юстировки
    - обобщённый механизм
    - ориентационный механизм
    - останавливающий механизм
    - поляризационный механизм
    - предохранительный механизм
    - приводной механизм аварийного стержня
    - приводной механизм управляющего стержня
    - приводной механизм
    - пусковой механизм
    - разгрузочный механизм
    - реакции механизм
    - регистрирующий механизм
    - синхротронный механизм
    - спитцеровский механизм теплопроводности
    - столкновительный механизм
    - тепловой механизм разветвления
    - тепловой механизм распыления
    - триггерный механизм
    - удерживающий механизм
    - хиггсовский механизм
    - циклотронный механизм
    - часовой механизм
    - экситонный механизм

    Русско-английский физический словарь > механизм

  • 4 механизм страхования от потерь в силы инфляции

    Универсальный русско-английский словарь > механизм страхования от потерь в силы инфляции

  • 5 дифференциальный манометр

    1. differential-pressure gage
    2. differential pressure indicator
    3. differential pressure gage
    4. differential manometer
    5. differential gauge pressure

     

    дифференциальный манометр
    дифманометр

    Манометр для измерения разности двух давлений.
    Примечание
    Дифманометр с верхним пределом измерения не более 40000 Па (4000 кгс/м2) называется микроманометром.
    [ГОСТ 8.271-77]

    дифференциальный манометр
    -

    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    EN

    differential-pressure gage
    (engineering) Apparatus to measure pressure differences between two points in a system; it can be a pressured liquid column balanced by a pressured liquid reservoir, a formed metallic pressure element with opposing force, or an electrical-electronic gage (such as strain, thermal-conductivity, or ionization).

    [ http://www.answers.com/topic/differential-pressure-gage#ixzz1gzzibWaQ]

    Малые значения дифференциального давления могут измеряться приборами на основе мембран и сильфонов.
    Манометры дифференциальные сильфонные показывающие типа ДСП-160 нашли широкое применение на территории СНГ. Принцип их действия основан на деформации двух автономных сильфонных блоков, находящихся под воздействием «плюсового» и «минусового» давления. Эти деформации преобразовываются в перемещение указательной стрелки прибора. Перемещение стрелки осуществляется до установления равновесия между «плюсовым» сильфоном, с одной стороны, и «минусовым» и цилиндрической пружиной - с другой.

    4147
    Рис. 2.23

    Дифференциальный сильфонный манометр:

    а – схема привода стрелки;
    б – блок первичного преобразования;
    1 – «плюсовый» сильфон;
    2 – «минусовый» сильфон;
    3 – шток;
    4 – рычаг;
    5 – торсионный вывод;
    6 – цилиндрическая пружина;
    7 – компенсатор;
    8 – плоскостный клапан;
    9 – основание;
    10 и 11 – крышки;
    12 – подводящий штуцер;
    13 – манжета;
    14 – дросселирующий канал;
    15 – клапан;
    16 – рычажная система;
    17 – трибко-секторный механизм;
    18 – стрелка;
    19 – регулировочный винт;
    20 – натяжная пружина;
    21 – пробка;
    22 – уплотнительное резиновое кольцо

    «Плюсовый» 1 и «минусовый» 2 сильфоны (рис. Рис. 2.23, б) соединены между собой штоком 3, функционально связанным с рычагом 4, который, в свою очередь, неподвижно закреплен на оси торсионного вывода 5. К концу штока на выходе «минусового» сильфона присоединена цилиндрическая пружина 6, закрепленная нижним основанием на компенсаторе 7 и работающая на растяжение. Каждому номинальному перепаду давления соответствует определенная пружина.

    «Плюсовый» сильфон состоит из двух частей. Его первая часть (компенсатор 7, состоящий из трех дополнительных гофр и плоскостных клапанов 8) предназначена для уменьшения температурной погрешности прибора из-за изменения объема жидкости-наполнителя, обусловленного варьированием температуры окружающего воздуха. При изменении температуры окружающей среды и соответственно рабочей жидкости ее увеличивающийся объем перетекает через плоскостный клапан во внутреннюю полость сильфонов. Вторая часть «плюсового» сильфона рабочая и идентична по конструкции «минусовому» сильфону.

    «Плюсовый» и «минусовый» сильфоны присоединены к основанию 9, на котором установлены крышки 10 и 11, образующие вместе с сильфонами «плюсовую» и «минусовую» камеры с соответствующими подводящими штуцерами 12 давления р + и р

    Внутренние объемы сильфонов, так же как и внутренняя полость основания 9, заполняются: жидкостью ПМС-5 для обычного и коррозионно-стойкого исполнений; составом ПЭФ-703110 – в кислородном варианте; дистиллированной водой – в варианте для пищевой промышленности и жидкостью ПМС-20 – для газового исполнения.

    В конструкциях дифманометров, предназначенных для измерения давления газа, на шток одета манжета 13, движение среды организовано через дросселирующий канал 14. Регулированием размера проходного канала с помощью клапана 15 обеспечивается степень демпфирования измеряемого параметра.

    Дифманометр работает следующим образом. Среды «плюсового» и «минусового» давления поступают через подводящие штуцеры в «плюсовую» и «минусовую» камеры соответственно. «Плюсовое» давление в большей степени воздействует на сильфон 1, сжимая его. Это приводит к перетоку находящейся внутри жидкости в «минусовый» сильфон, который растягивается и разжимает цилиндрическую пружину. Такая динамика происходит до уравновешивания сил взаимодействия между «плюсовым» сильфоном и парой – «минусовый» сильфон – цилиндрическая пружина. Мерой деформации сильфонов и их упругого взаимодействия служит перемещение штока, которое передается на рычаг и соответственно на ось торсионного вывода. На этой оси (рис. 2.23,а) закреплена рычажная система 16, обеспечивающая передачу вращения оси торсионного вывода к трибко-секторному механизму 17 и стрелке 18. Таким образом, воздействие на один из сильфонов приводит к угловому перемещению оси торсионного вывода и затем к повороту указательной стрелки прибора.
    Регулировочным винтом 19 с помощью натяжной пружины 20 производится корректировка нулевой точки прибора.

    Пробки 21 предназначены для продувки импульсных линий, промывки измерительных полостей сильфонного блока, слива рабочей среды, заполнения измерительных полостей разделительной жидкостью при вводе прибора в работу.
    При односторонней перегрузке одной из камер происходит сжатие сильфона и перемещение штока. Клапан в виде уплотнительного резинового кольца 22 садится в гнездо основания, перекрывает переток жидкости из внутренней полости сильфона, и таким образом предотвращается его необратимая деформация. При непродолжительных перегрузках разность «плюсового» и «минусового» давления на сильфонный блок может достигать 25 МПа, а в отдельных типах приборов не превышать 32 МПа.
    прибор может выпускаться как в общетеническом, так и в аммиачном (А), кислородном (К), коррозионно-стойком-пищевом (Пп) исполнениях.
     

    4148
    Рис. 2.24

    Показывающий дифференциальный манометр на основе мембранной коробки:

    1 – мембранная коробка;
    2 – держатель «плюсового» давления;
    3 – держатель «минусового» давления;
    4 – корпус;
    5 – передаточный механизм;
    6 – стрелка;
    7 – цифербла

    Достаточно широкое распространение получили приборы на основе мембран и мембранных коробок. В одном из вариантов (рис. 2.24) мембранная коробка 1, внутрь которой через подводящий штуцер держателя 2 поступает «плюсовое» давление, является чувствительным элементом дифманометра. Под воздействием этого давления смещается подвижный центр мембранной коробки.
    «Минусовое» давление через подводящий штуцер держателя 3 подается внутрь герметичного корпуса 4 прибора и воздействует на мембранную коробку снаружи, создавая противодействие перемещению ее подвижного центра. Таким образом «плюсовое» и «минусовое» давления уравновешивают друг друга, а перемещение подвижного центра мембранной коробки свидетельствует о величине разностного – дифференциального давления. Этот сдвиг через передаточный механизм передается на указательную стрелку 6, которая на шкале циферблата 7 показывает измеряемое дифференциальное давление.
    Диапазон измеряемого давления определяется свойствами мембран и ограничивается, как правило, в пределах от 0 до 0,4…40 кПа. При этом класс точности может составлять 1,5; 1,0; 0,6; 0,4, а в некоторых приборах 0,25.

    Обязательная конструктивная герметичность корпуса определяет высокую защищенность от внешних воздействий и определяется в основном уровнем IP66.

    В качестве материала для чувствительных элементов приборов используется бериллиевая и другие бронзы, а также нержавеющая сталь, для штуцеров, передаточных механизмов – медные сплавы, коррозионно-стойкие сплавы, включая нержавеющую сталь.
    Приборы могут изготавливаться в корпусах малых (63 мм), средних (100 мм), и больших (160 мм) диаметров.

    Мембранные показывающие дифференциальные манометры, как и приборы с мембранными коробками, используются для измерения малых значений дифференциального давления. Отличительная особенность – устойчивая работа при высоком статическом давлении.
     

    4149
    Рис. 2.25

    Мембранные показывающие дифференциальные манометры с вертикальной мембраной:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – чувствительная гофрированная мембрана;
    4 – передающий шток;
    5 – передаточный механизм;
    6 – предохранительный клапан

    Дифманометр с вертикальной мембраной (Рис. 2.25) состоит из «плюсовой» 1 и «минусовой» 2 рабочих камер, разделенных чувствительной гофрированной мембраной 3. Под воздействием давления мембрана деформируется, в результате чего перемещается ее центр вместе с закрепленным на нем передающим штоком 4. Линейное смещение штока в передаточном механизме 5 преобразуется в осевое вращение трибки, и соответственно указательной стрелки, отсчитывающей на шкале прибора измеряемое давление.

    Для сохранения работоспособности чувствительной гофрированной мембраны при превышении максимального допустимого статического давления предусмотрен открывающийся предохранительный клапан 6. Причем конструкции этих клапанов могут быть различны. Соответственно такие приборы не могут использоваться, когда не допускается контакт сред из «плюсовой» и «минусовой» камер.

    4150
    Рис. 2.26

    Мембранный показывающий дифференциальный манометр с горизонтальной мембраной:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – входной блок;
    4 - чувствительная гофрированная мембрана;
    5 – толкатель;
    6 – сектор;
    7 – трибка;
    8 – стрелка;
    9 – циферблат;
    10 – разделительный сильфон

    Дифманометр с горизонтальной чувствительной мембраной показан на рис. 2.26. Входной блок 3 состоит из двух частей, между которыми устанавливается гофрированная мембрана 4. В ее центре закреплен толкатель 5, передающий перемещение от мембраны, через сектор 6, трибку 7 к стрелке 8. В этом передаточном звене линейное перемещение толкателя преобразуется в осевое вращение стрелки 8, отслеживающей на шкале циферблата 9 измеряемое давление. В этой конструкции применена сильфонная система вывода толкателя из зоны рабочего давления. Разделительный сильфон 10 своим основанием герметично закрепляется на центре чувствительной мембраны, а верхней частью также герметично прикрепляется к входному блоку. Такая конструкция исключает контакт измеряемой и окружающей сред.
    Конструкция входного блока предусматривает возможность промывки или продувки «плюсовой» и «минусовой» камер и обеспечивает применение таких приборов для работы даже в условиях загрязненных рабочих сред.

    4151
    Рис. 2.27

    Мембранный двухкамерный показывающий дифманометр:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – передающий шток;
    4 – сектор;
    5 – трибка;
    6 – коромысло

    Двухкамерная система измерения дифференциального давления применена в конструкции прибора, показанного на рис. 2.27. Измеряемые потоки среды направляются в «плюсовую» 1 и «минусовую» 2 рабочие камеры, основными функциональными элементами которых являются автономные чувствительные мембраны. Преобладание одного давления над другим приводит к линейному перемещению передающего штока 3, которое через коромысло 6 передается соответственно на сектор 4, трибку 5 и систему стрелочной индикации измеряемого параметра.
    Дифманометры с двухкамерной системой измерения используются для измерения малых дифференциальных давлений при высоких статических нагрузках, вязких сред и сред с твердыми вкраплениями.

    4152
    Рис. 2.28.

    Дифманометр с магнитным преобразователем:

    1 – поворотный магнит;
    2 – стрелка;
    3 – корпус;
    4 – магнитный поршень;
    5 – фторопластовый сальник;
    6 – рабочий канал;
    7 – пробка;
    8 – диапазонная пружина;
    9 – блок электроконтактов

    Принципиально иной показывающий дифманометр изображен на рис. 2.28. Поворотный магнит 1, на торце которого установлена стрелка 2, размещен в корпусе 3, выполненном из немагнитного металла. Магнитный поршень, уплотненный фторопластовым сальником 5, может передвигаться в рабочем канале 6. Магнитный поршень 4 со стороны «минусового» давления подпирает пробка 7, в свою очередь поджимаемая диапазонной пружиной 8.
    Среда «плюсового» давления через соответствующий подводящий штуцер воздействует на магнитный поршень и сдвигает его вместе с пробкой 7 по каналу 6 до уравновешивания такого смещения противодействующими силами – «минусовым» давлением и диапазонной пружиной. Движение магнитного поршня приводит к осевому вращению поворотного магнита и соответственно указательной стрелки. Такой сдвиг пропорционален перемещению стрелки. Полное согласование достигается подбором упругих характеристик диапазонной пружины.
    В дифманометре с магнитным преобразователем предусмотрен блок 9, замыкающий и размыкающий соответствующие контакты при прохождении вблизи его магнитного поршня.

    Приборы с магнитным преобразователем устойчивы к воздействию статического давления (до 10 МПа). Они обеспечивают относительно невысокую погрешность (примерно 2 %) в диапазоне функционирования до 0,4 Мпа и используются для измерения давления воздуха, газов, различных жидкостей.

    [ http://jumas.ru/index.php?area=1&p=static&page=razdel_2_3_2]

     

    4145     4146
        Показывающий дифференциальный манометр на основе трубчатой пружины

    1 и 2 – держатели;
    3 и 4 – трубчатые пружины;
    5 и 8 – трибки;
    6 – стрелка «плюсового» давления;
    7 и 9 – шкалы избыточного давления;
    10 – стрелка «минусового» давления

    В приборах такого типа на автономных держателях 1 и 2, соединенных вместе, установлены трубчатые пружины. Каждый держатель вместе с трубчатым чувствительным элементом образовывают автономные измерительные каналы. Среда «плюсового» давления поступает через входной штуцер держателя 2 в трубку 4, деформирует ее овал, в результате чего перемещается наконечник трубки и это перемещение через соответствующий зубчатый сектор передается на трибку 5. Эта трибка соответственно приводит к отклонению указательной стрелки 6, которая показывает на шкале 7 значение «плюсового» избыточного давления.

    «Минусовое» давление посредством держателя 1, трубчатой пружины 3, трибки 8 приводит к перемещению циферблата 9, объединенного со стрелкой 10, которая на шкале 7 отслеживает значение измеряемого параметра.

    Дифференциальные манометры (далее – дифманометры), как отмечалось в п.1.3, являются названием отнесенным в нашей стране к показывающим приборам. (Устройства, обеспечивающие электрический выходной сигнал, пропорциональный измеряемому дифференциальному давлению имеют название измерительных преобразователей разности давлений). Хотя отдельные производители, а также некоторые специалисты-эксплуатанционщики измерительные преобразователи разности давлений также называют дифманометрами.

    Дифманометры нашли основное применение в технологических процессах для измерения, контроля, регистрации и регулирования следующих параметров:

    · расхода различных жидких, газообразных и парообразных сред по перепаду давления на разного рода сужающих устройствах (стандартных диафрагмах, соплах, включая сопла Вентури) и дополнительно вводимых в поток гидро- и аэродинамических сопротивлениях, например на преобразователях типа Annubar или на нестандартных гидро- и аэродинамических препятствиях;

    · перепада - разности давления, вакуумметрических, избыточных, в двух точках технологического цикла, включая потери на фильтрах систем вентиляции и кондиционирования воздуха;

    · уровня жидких сред по величине гидростатического столба.

    Согласно ГОСТ 18140–84/23/, предельные номинальные перепады давления дифманометров-расходомеров, верхние пределы или сумма абсолютных значений верхних пределов измерений дифманометров-перепадомеров должны приниматься из следующего ряда:

    10; 16; 25; 40; 63; 100; 160; 250; 400; 630 Па;

    1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 40; 63; 100; 160; 250; 400; 630 кПа;

    1; 1,6; 2,5; 4; 6,3 МПа.

    У дифманометров-расходомеров верхние пределы измерений выбираются из ряда, определяемого выражением:

    А = а × 10n, (2.7)

    где а – одно из чисел следующего ряда: 1; 1,25; 1,6; 2,0; 2,5; 3,2; 4; 5; 6,3; 8; n – целое (положительное или отрицательное) число или нуль.

    Верхние пределы измерений или сумма абсолютных значений верхних пределов измерений дифманометров-уровнемеров следует выбирать и ряда:

    0,25; 0,4; 0,63; 1,0; 1,6; 2,5; 4,0; 6,3; 10; 16; 25; 40; 63; 100 и 160 метров.

    Одной из важных характеристик дифманометров является предельно допустимое рабочее избыточное давление, т. е. избыточное давление, которое могут выдержать рабочие каналы без необратимой деформации чувствительных элементов. Такое значение параметра принимается из следующего ряда:

    25; 40; 63; 100; 160; 250; 400 и 630 кПа;

    1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 32; 40 и 63 МПа.

    Нижние пределы измерений дифманометров-расходо-меров из-за неустойчивости работы стандартных сужающих устройств при малых Числах Рейнольдса измеряемого потока не должны превышать 30 % шкалы прибора. У преобразователей Annubar этот предел не превышает 10 % при сохранении объявленного класса точности (1,0).

    Классы точности дифманометров принимаются из ряда: 0,25; 0,5; 1,0; 1,5.

    Дифманометры должны иметь линейную шкалу при измерении уровня или перепада, линейную или квадратичную – при измерении расхода.

    Дифманометры могут иметь условные обозначения, предложенные в методике п.1.4. Указываются модель прибора, причем на первом месте в обозначении фиксируется измеряемый параметр – тип измерителя (дифманометр), затем – принцип измерения и функция, предельный номинальный перепад, избыточное рабочее давление, класс точности. Например, дифманометр сильфонный показывающий в корпусе диаметром 160 мм, на предельный номинальный перепад давления 630 кПа, с рабочим избыточным давлением 32 МПа, класса точности 1,5 обозначается как

    ДСП 160 (0…630 кПа)-32 МПа-1,5.

    После этого допускается указывать дополнительные обозначения, например исполнение по «IP», измеряемой среде, присоединительным линиям и т. д.

    Специфика измерения дифференциального давления обусловливает наличие в дифманометрах устройств продувки импульсных линий без необходимости демонтажа прибора или его узлов.

    При испытаниях, а также в нормальных условиях отечественные дифманометры, согласно требований производителя, должны обеспечивать заданные метрологические характеристики после выдержки не менее 6-ти часов при температуре окружающей среды:

    20 ± 2 или 23 ± 2 оС – для приборов классов точности 0,5; 0,6 и 1;

    20 ± 5 или 23 ± 5 оС – для приборов класса точности 1,5.

    Современные конструкции из-за снижения металлоемкости и совершенствования преобразователей позволяют сокращать время температурной адаптации у некоторых моделей до нескольких десятков минут.

    Конкретная температура приведена в ТУ на измеритель и должна регистрироваться в техническом описании или паспорте на прибор.

    Дифманометры, не защищенные от одностороннего воздействия, должны выдерживать перегрузку со стороны среды «плюсового» давления, превышающую предельные номинальные перепады на 10…50 %. «Плюсовым», в противовес «минусовому», называют большее из двух давлений среды, поступающей на вход дифференциального манометра.

    Конструкции, у которых предусмотрены односторонние перегрузки, должны выдерживать десятикратные, стократные или двухсот пятидесятикратные односторонние перегрузки/23/.

    Показывающие дифференциальные манометры на основе трубчатой пружины находят широкое применение для визуализации расхода различных сред, гидродинамических потерь в системах теплового отопления.

    Дифференциальное давление, т. е. разность давлений р отсчитывается стрелкой на шкале циферблата.

    Дифманометры такого типа, исходя из особенностей трубчатых пружин, обеспечивают работоспособность в промышленных условиях в диапазоне от 0 до 100 МПа.

    [ http://jumas.ru/index.php?area=1&p=static&page=razdel2_2_4]

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > дифференциальный манометр

  • 6 тяга


    thrust
    (пропульсивное усилие, создаваемое реактивным двигателем или возд. винтом) — pushing or pulling force developed by aircraft engine or propeller
    - (проводки управления) — rod, link
    - (соединительный элемент)link
    -, асимметричная — asymmetric thrust
    для путевого управления (при пробеге) используются тормоза и асимметричная тяга двигателей. — the brakes and asymmetric thrust are used, if required, for directional control.
    - без впрыска водыdry thrust
    - без потерь (чистая)net thrust
    тяга гтд без учета потерь на сопротивление, создаваемое набегающим потоком, — the gross thrust of а jet engine minus the drag due to the momentum of the incoming air.
    -, бесфорсажная — non-afterburning thrust, dry thrust
    -, бесфорсажная, максимальная — dry (thrust) rating
    -, взлетная (дв.) — takeoff /liftoff/ thrust
    тяга, развиваемая двигателем на взлетном режиме его работы. — а thrust developed by an engine at takeoff power (setting).
    -, взлетная...кг — take-off thrust rated at...rq
    - винтового типа, раздвижная (напр., рулевой агрегат элерона) — screwjack link
    - винтового типа, электромеханическая, раздвижная (механизм рау) — electically-driven screwjack link
    - воздушного винтаpropeller thrust
    -, гарантированная (дв.) — guaranteed thrust
    - двигателяengine thrust
    - двигателя в условиях пониженной температуры — engine thrust on cold day /at low ambient temperature/
    - замка выпущенного положения (шасси)down-lock actuating rod
    -, избыточная (дв.) — excess thrust
    разность между располагаемой и потребной тягами для данного режима полета. — а difference between the thrust available and required for the given flight condition.
    -, клапанная (пд) — valve push rod
    -, компенсирующая — compensating rod
    - крестовины (хвостового винта)spider link
    - малого газа, обратная — reverse idle thrust
    - малого газа, прямая — forward idle thrust

    set the reverse levers to fwd idle position.
    - на большом газе — full throttle thrust /power/
    - на взлетном режиме — takeoff /liftoff/ thrust
    - на всех режимахthrust at any operating condition
    - на максимальном продолжительном режиме (дв.) — maximum continuous thrust
    остальные двигатели работают на мпр. — the remaining engines at the available maximum continuous power or thrust.
    - на стороне исправного шасси (при посадке на одну основную опору)reverse thrust on the good (landing) gear side
    - на установившемя режиме (дв.) — steady thrust
    -, нежелательная реверсивная — unwanted reverse thrust
    одиночный отказ или неисправность системы реверса тяги не должен создавать нежелательной реверсивной тяги на всех режимах, — no single failure or malfunction of the reversing system shall result in an unwanted reverse thrust under any operating conditions.
    -, номинальная (дв.) — rated thrust, normal standard rating thrust
    - (или мощность), номинальная (дв.) — rating rating is а designated limit of operating characteristics based on definite conditions.
    -, обратная, на малом газе — reverse idle thrust
    - несущего винта (создающая подъемную силу или учитываемая при копровых испытаниях) — rotor lift а rotor lift may be assumed to act through the center of gravity.
    - несущего винта при управлении общим и циклическим шагомrotor thrust
    - несущего винта (создающая вертикальное, поступательнoe движение вертолета, или его движение вправо, влево или назад) — (vertical, forward, right, left or aft) rotor thrust
    -, обратная — reverse /backward/ thrust
    тяга в направлении обратном направлению движения самолета. — thrust applied to а moving aircraft in а direction to орpose the aircraft motion.
    -, общая обратная (реверсивная) — otal reverse thrust
    общ. обратная тяга может составлять (50 %) от прямой тяги при одинаковой степени повышения давления двигателя. — the total reverse thrust is аррох. (50) percent of the forward thrust at the same epr.
    -, отрицательная (возд. винта при шаге около оо) — (propeller) drag
    -, отрицательная (реверсивная) — reverse thrust
    - подвески двигателя — engine mount/ support, suspension/ arm
    - полная прямаяfull forward thrust
    -, полная реверсивная — full reverse thrust
    использование полной реверсивной тяги допускается в течение...сек. — the reverser need only be operated at full reverse thrust for...
    -, пониженная (ниже расчетного номинала) — derated thrust
    -, потребная (дв.) — thrust required
    тяга, необходимая для выдерживания данного режима полета. — а thrust needed to maintain the set light condition.
    -, приведенная тяга двигателя, приведенная к стандартным атмосферным условиям (или мса) — thrust based upon standard atmosphere conditions, thrust in isa conditions
    -, пружинная — spring-loaded link/rod
    -, пружинная, загрузочная — feel spring link
    -, прямая (создающая поступательное движение) — forward thrust
    -, прямая (на режиме малого газа) — forward (idle) thrust
    -, прямая, на малом газе — forward idle thrust reverser levers at fwd idle.
    -, развязывающая, пружинная — spring-loaded override link
    для обеспечения возможности управления исправными секциями руля (элерона) при заклинивании одной из секций.
    -, располагаемая (дв.) — thrust available
    наибольшая тяга, развиваемая двигателем на данных высоте и скорости полета при работе на номинальном режиме (иногда на взлетном ипи форсированном). — the maximum thrust developed by the engine at the given altitude and speed with the engine operating at maximum continuous (or takeoff, augmented) power.
    -, распорная (шасси) (рис. 27) — lock strut
    -, расчетная — design /rated/ thrust
    - (или мощность), расчетная (дв.) — rating
    -, реактивная — jet thrust
    тяга, создаваемая турбореактивным двигателем. — the thrust of а jet engine.
    - реверса, эффективная — effective reverse thrust
    эффективная реверсивная тяга должна обеспечивать сокращение дистанции торможения не менее чем на 10%. — reverse thrust is regarded as effective if its use results in а reduction in groundborne stopping distance of at least 10%.
    -, реверсивная (воздушного винта) — propeller reverse thrust
    -, реверсивная (двигателя) — engine reverse thrust
    -, реверсивная, создаваемая реверсированием потока воздуха за (передним) вентилятором — reverse thrust (obtained) from front fan cold steam airflow
    -, регулируемая (дв.) — variable thrust
    -, режимная — operating thrust
    -, режимная (полетная) — flight thrust
    -, регулируемая (проводка управления) — djustable control rod
    - с вспрыскам водыwet thrust
    - с вспрыскам воды при взлете — wet takeoff thrust turn off water injection pumps after 2 minutes of wet takeaff thrust.
    - сервопривода (звено сервосистемы)servo link
    -, силовая — drive rod
    - синхронизации закрылковflap interconnection rod
    -, соединительная — link
    -, статическая (дв.) — static thrust
    тяга, развиваемая двигателем на земле (на месте). — а thrust developed by eпgine on the ground (at rest).
    - статическая, взлетная (на уровне моря, в условиях стандартной атмосферы) — static takeoff thrust (at sea level, standard conditions)
    - створки реверсивного устройства, силовая — thrust reverser bucket drive /linkage, actuator/ rod
    - створки шасси — landing gear door drive /linkage, actuator/ rod
    - страгивания (ла)break-away thrust
    -, суммарная (двигателей) — total/ powerplant/ thrust
    - толкателя клапана (дв.) — valve tappet push rod
    -, тормозная (компенсирующая) — brake compensating rod
    -, удельная (дв.) — specific thrust
    тяга, развиваемая двигателем и отнесенная к секундному весовому расходу воздуха в нем.
    - управленияcontrol rod
    - управления общим шагом (несущего винта)(rotor) collective pitch control rod
    - управления, раздвижная, — screwjack link
    - управления створкой шасси — landing gear door linkage/ drive, actuator/ rod
    - управления циклическим шагом (несущего винта)(rotor) cyclic pitch control rod
    - управления шагом (хвостового или несущего винта)(rotor) pitch control rod
    -, фактическая (полученная) — actual /observed/ thrust
    -, форсажная — reheat/ afterburning/ thrust
    -, форсированная (усиленная) — augmented thrust
    -, чистая — net thrust
    тяга без потерь на преодоление сопротивления, создаваемого набегающим потоком. — the gross thrust of a jet спgine minus the drag due to the momentum of the incoming air.
    -, эффективная — effective thrust
    запас т. — thrust reserve
    избыток т. — margin of engine thrust
    избыток т. над сопротивлением — thrust/drag margin
    килограмм на килограмм т. в час (кг/кг тяги/час) — kg/kg thrust/hr
    падение т. — thrust dacay
    форсирование т. — thrust augmentation
    центр т. — thrust axis
    восстанавливать т. — regain thrust
    работать на прямой (обратной) т. (дв.) — operate at forward (reverse) thrust
    развивать (создавать) т. — develop thrust
    реверсировать т. — reverse thrust
    форсировать т. — augment thrust

    Русско-английский сборник авиационно-технических терминов > тяга

  • 7 тяга

    тяга сущ
    1. down-lock actuating rod
    2. pull 3. push 4. rod 5. thrust автоматическое флюгирование по отрицательной тяге
    drag-actuated autofeathering
    автомат тяги
    1. autothrottle system
    (двигателя) 2. autothrottle автомат тяги в системе автопилота
    autopilot auto throttle
    асимметричная тяга двигателей
    asymmetric engines power
    вертикально направленная тяга
    upward thrust
    включать реверс тяги
    deploy a thrust reverser
    воздушный винт прямой тяги
    direct drive propeller
    восстанавливать тягу
    regain thrust
    вспомогательные тяги
    auxiliaries
    выключать реверс тяги
    stow a thrust reverser
    выключение реверса тяги
    thrust brake retraction
    высота уменьшения тяги
    cutback height
    гермовывод тяги управления
    control rod pressure seal
    датчик автомата тяги
    autothrottle transducer
    датчик тяги
    thrust pickup
    двигатель с пониженной тягой
    derated engine
    двигаться за счет собственной тяги
    move under own power
    замок реверса тяги
    reverser lock
    замок створок реверса тяги
    reverser bucket lock
    запас тяги
    thrust reserve
    заход на посадку при симметричной тяге
    symmetric thrust approach
    избыток тяги двигателя
    engine thrust margin
    избыточная тяга
    excess thrust
    измеритель тяги
    thrust meter
    истинная удельная тяга
    actual specific thrust
    ковш реверса тяги
    thrust reverser bucket
    линия тяги
    trust axis
    максимальная тяга
    top thrust
    механизм реверса тяги со струеотражательными заслонками
    target-type thrust reverser
    момент тяги
    thrust moment
    наконечник тяги
    rod end fitting
    несимметричная реверсивная тяга
    asymmetrical reversal thrust
    несимметричность тяги
    thrust misalignment
    нулевая тяга
    zero thrust
    обеспечивать тягу
    provide thrust
    обратная тяга
    1. backward thrust
    2. reversal thrust обратная тяга на режиме малого газа
    reverse idle thrust
    опора тяги
    link rod support
    осевая тяга
    axial thrust
    отражатель в механизме реверса тяги
    power reversal ejector
    отрицательная тяга воздушного винта
    propeller drag
    падение тяги
    thrust decay
    переводить винт на отрицательную тягу
    reverse the propeller
    перекладка реверса на прямую тягу
    thrust reverser stowage
    переключать на прямую тягу
    return to forward thrust
    полет с несимметричной тягой двигателей
    asymmetric flight
    полная прямая тяга
    full forward thrust
    полная реверсивная тяга
    full reverse thrust
    положительная тяга
    positive thrust
    посадка с асимметричной тягой
    asymmetric thrust landing
    посадка с использованием реверса тяги
    reverse-thrust landing
    потеря тяги при скольжении воздушного винта
    airscrew slip loss
    потребная тяга
    required thrust
    привод механизма реверса тяги
    thrust reverser actuator
    применять реверс тяги
    apply reserves thrust
    пружинная тяга
    spring link
    прямая тяга
    forward thrust
    прямая тяга на режиме малого газа
    forward idle thrust
    развивать тягу
    develop thrust
    располагаемая тяга
    available thrust
    расчетная тяга
    design thrust
    реактивная тяга
    jet thrust
    реверсивная тяга
    unwanted reverse thrust
    реверсировать тягу
    reverse thrust
    реверс основной тяги
    core jet reversal
    реверс тяги
    thrust reversal
    регулируемая тяга
    1. variable thrust
    2. controllable thrust режимная тяга
    operating thrust
    решетка реверса тяги
    thrust reverser cascade
    рычаг управления реверсом тяги
    1. thrust reverser lever
    2. reverse thrust lever система реверсирования тяги
    thrust reverser system
    система создания дополнительной вертикальной тяги
    augmented system
    сопло с реверсом тяги
    thrust-reverse nozzle
    составляющая силы тяги
    thrust component
    статическая тяга
    static thrust
    створка механизма реверса тяги
    thrust reverser door
    стопорение рулевой тяги
    control-rod locking
    суммарная тяга
    1. resultant thrust
    2. combined thrust 3. overall thrust табло сигнализации положения реверса тяги
    thrust reverser light
    торможение реверсом тяги
    thrust braking
    тормозить отрицательной тягой винта
    brake by propeller drag
    тормозить реверсом тяги
    brake by reverse thrust
    тормозная тяга
    brake compensating rod
    тяга без потерь
    net thrust
    тяга воздушного винта
    1. airscrew propulsion
    2. propeller thrust тяга в полете
    flight thrust
    тяга двигателя
    engine thrust
    тяга на взлетном режиме
    takeoff thrust
    тяга на максимально продолжительном режиме
    maximum continuous thrust
    тяга на режиме максимального газа
    full throttle thrust
    тяга на режиме малого газа
    idling thrust
    тяга на установившемся режиме
    steady thrust
    тяга, необходимая для страгивания
    break-away thrust
    тяга несущего винта
    rotor thrust
    тяга осевой передачи усилий
    push-pull rod
    тяга передачи тормозных усилий
    brake tension rod
    тяга передачи усилий
    drive rod
    тяга поперечного управления
    lateral control rod
    тяга провольного управления
    fore-aft control rod
    тяга продольного управления
    longitudinal control rod
    тяга, регулируемая по величине и направлению
    vectored thrust
    тяга синхронизации закрылков
    flap interconnection rod
    тяга - толкатель
    push rod
    тяга - толкатель клапанов
    valve push rod
    тяга управление пружинным сервокомпенсатором
    spring tab control rod
    тяга управления
    1. control rod
    2. linkage rod тяга управления общим шагом
    collective pitch control rod
    тяга управления створкой
    door operating bar
    тяга управления циклическим шагом
    cyclic pitch control rod
    удельная тяга
    specific thrust
    удельный расход топлива на кг тяги в час
    thrust specific fuel consumption
    указатель реверса тяги
    thrust-reverse indicator
    уменьшать тягу
    reduce thrust
    уменьшение тяги
    thrust reduction
    уменьшение тяги с целью снижения шума
    noise abatement thrust cutback
    уменьшение шума за счет изменения тяги
    noise thrust correction
    устройство для создания тяги
    thrust producting device
    форсажная камера для увеличения тяги
    thrust augmentor
    форсирование тяги
    thrust augmentation
    форсированная тяга
    augmented thrust
    форсировать тягу
    augment thrust
    цапфа крепления тяги
    rod trunnion
    цилиндр реверса тяги
    thrust reverser cylinder
    шаг отрицательной тяги
    1. reverse pitch
    2. drag pitch шаг положительной тяги
    forward pitch
    шаг при отсутствии тяги
    1. zero-thrust pitch
    2. no-lift pitch шум при включении реверса тяги
    reverse thrust noise
    эффект постоянной тяги
    constant thrust effect

    Русско-английский авиационный словарь > тяга

  • 8 ИБП для централизованных систем питания

    1. centralized UPS

     

    ИБП для централизованных систем питания
    ИБП для централизованного питания нагрузок
    -
    [Интент]

    ИБП для централизованных систем питания

    А. П. Майоров

    Для многих предприятий всесторонняя защита данных имеет жизненно важное значение. Кроме того, есть виды деятельности, в которых прерывания подачи электроэнергии не допускаются даже на доли секунды. Так работают расчетные центры банков, больницы, аэропорты, центры обмена трафиком между различными сетями. В такой же степени критичны к электропитанию телекоммуникационное оборудование, крупные узлы Интернет, число ежедневных обращений к которым исчисляется десятками и сотнями тысяч. Третья часть обзора по ИБП посвящена оборудованию, предназначенному для обеспечения питания особо важных объектов.

    Централизованные системы бесперебойного питания применяют в тех случаях, когда прерывание подачи электроэнергии недопустимо для работы большинства единиц оборудования, составляющих одну информационную или технологическую систему. Как правило, проблемы питания рассматривают в рамках единого проекта наряду со многими другими подсистемами здания, поскольку они требуют вложения значительных средств и увязки с силовой электропроводкой, коммутационным электрооборудованием и аппаратурой кондиционирования. Изначально системы бесперебойного питания рассчитаны на долгие годы эксплуатации, их срок службы можно сравнить со сроком службы кабельных подсистем здания и основного компьютерного оборудования. За 15—20 лет функционирования предприятия оснащение его рабочих станций обновляется три-четыре раза, несколько раз изменяется планировка помещений и производится их ремонт, но все эти годы система бесперебойного питания должна работать безотказно. Для ИБП такого класса долговечность превыше всего, поэтому в их технических спецификациях часто приводят значение важнейшего технического показателя надежности — среднего времени наработки на отказ (Mean Time Before Failure — MTBF). Во многих моделях с ИБП оно превышает 100 тыс. ч, в некоторых из них достигает 250 тыс. ч (т. е. 27 лет непрерывной работы). Правда, сравнивая различные системы, нужно учитывать условия, для которых этот показатель задан, и к предоставленным цифрам относиться осторожно, поскольку условия работы оборудования разных производителей неодинаковы.

    Батареи аккумуляторов

    К сожалению, наиболее дорогостоящий компонент ИБП — батарея аккумуляторов так долго работать не может. Существует несколько градаций качества батарей, которые различаются сроком службы и, естественно, ценой. В соответствии с принятой два года назад конвенцией EUROBAT по среднему сроку службы батареи разделены на четыре группы:

    10+ — высоконадежные,
    10 — высокоэффективные,
    5—8 — общего назначения,
    3—5 — стандартные коммерческие.

    Учитывая исключительно жесткую конкуренцию на рынке ИБП малой мощности, производители стремятся снизить до минимума начальную стоимость своих моделей, поэтому часто комплектуют их самыми простыми батареями. Применительно к этой группе продуктов такой подход оправдан, поскольку упрощенные ИБП изымают из обращения вместе с защищаемыми ими персональными компьютерами. Впервые вступающие на этот рынок производители, пытаясь оттеснить конкурентов, часто используют в своих интересах неосведомленность покупателей о проблеме качества батарей и предлагают им сравнимые по остальным показателям модели за более низкую цену. Имеются случаи, когда партнеры крупной фирмы комплектуют ее проверенные временем и признанные рынком модели ИБП батареями, произведенными в развивающихся странах, где контроль за технологическим процессом ослаблен, а, значит, срок службы батарей меньше по сравнению с "кондиционными" изделиями. Поэтому, подбирая для себя ИБП, обязательно поинтересуйтесь качеством батареи и ее производителем, избегайте продукции неизвестных фирм. Следование этим рекомендациям сэкономит вам значительные средства при эксплуатации ИБП.

    Все сказанное еще в большей степени относится к ИБП высокой мощности. Как уже отмечалось, срок службы таких систем исчисляется многими годами. И все же за это время приходится несколько раз заменять батареи. Как это ни покажется странным, но расчеты, основанные на ценовых и качественных параметрах батарей, показывают, что в долгосрочной перспективе наиболее выгодны именно батареи высшего качества, несмотря на их первоначальную стоимость. Поэтому, имея возможность выбора, устанавливайте батареи только "высшей пробы". Гарантированный срок службы таких батарей приближается к 15 годам.

    Не менее важный аспект долговечности мощных систем бесперебойного питания — условия эксплуатации аккумуляторных батарей. Чтобы исключить непредсказуемые, а следовательно, часто приводящие к аварии перерывы в подаче электропитания, абсолютно все включенные в приведенную в статье таблицу модели оснащены самыми совершенными схемами контроля за состоянием батарей. Не мешая выполнению основной функции ИБП, схемы мониторинга, как правило, контролируют следующие параметры батареи: зарядный и разрядный токи, возможность избыточного заряда, рабочую температуру, емкость.

    Кроме того, с их помощью рассчитываются такие переменные, как реальное время автономной работы, конечное напряжение зарядки в зависимости от реальной температуры внутри батареи и др.

    Подзарядка батареи происходит по мере необходимости и в наиболее оптимальном режиме для ее текущего состояния. Когда емкость батареи снижается ниже допустимого предела, система контроля автоматически посылает предупреждающий сигнал о необходимости ее скорой замены.

    Топологические изыски

    Долгое время специалисты по системам электропитания руководствовались аксиомой, что мощные системы бесперебойного питания должны иметь топологию on-line. Считается, что именно такая топология гарантирует защиту от всех нарушений на линиях силового питания, позволяет фильтровать помехи во всем частотном диапазоне, обеспечивает на выходе чистое синусоидальное напряжение с номинальными параметрами. Однако за качество электропитания приходится платить повышенным выделением тепловой энергии, сложностью электронных схем, а следовательно, потенциальным снижением надежности. Но, несмотря на это, за многолетнюю историю выпуска мощных ИБП были разработаны исключительно надежные аппараты, способные работать в самых невероятных условиях, когда возможен отказ одного или даже нескольких узлов одновременно. Наиболее важным и полезным элементом мощных ИБП является так называемый байпас. Это обходной путь подачи энергии на выход в случае ремонтных и профилактических работ, вызванных отказом некоторых компонентов систем или возникновением перегрузки на выходе. Байпасы бывают ручными и автоматическими. Они формируются несколькими переключателями, поэтому для их активизации требуется некоторое время, которое инженеры постарались снизить до минимума. И раз уж такой переключатель был создан, то почему бы не использовать его для снижения тепловыделения в то время, когда питающая сеть пребывает в нормальном рабочем состоянии. Так появились первые признаки отступления от "истинного" режима on-line.

    Новая топология отдаленно напоминает линейно-интерактивную. Устанавливаемый пользователем системы порог срабатывания определяет момент перехода системы в так называемый экономный режим. При этом напряжение из первичной сети поступает на выход системы через байпас, однако электронная схема постоянно следит за состоянием первичной сети и в случае недопустимых отклонений мгновенно переключается на работу в основном режиме on-line.

    Подобная схема применена в ИБП серии Synthesis фирмы Chloride (Сети и системы связи, 1996. № 10. С. 131), механизм переключения в этих устройствах назван "интеллектуальным" ключом. Если качество входной линии укладывается в пределы, определяемые самим пользователем системы, аппарат работает в линейно-интерактивном режиме. При достижении одним из контролируемых параметров граничного значения система начинает работать в нормальном режиме on-line. Конечно, в этом режиме система может работать и постоянно.

    За время эксплуатации системы отход от исходной аксиомы позволяет экономить весьма значительные средства за счет сокращения тепловыделения. Сумма экономии оказывается сопоставимой со стоимостью оборудования.

    Надо отметить, что от своих исходных принципов отошла еще одна фирма, ранее выпускавшая только линейно-интерактивные ИБП и ИБП типа off-line сравнительно небольшой мощности. Теперь она превысила прежний верхний предел мощности своих ИБП (5 кВА) и построила новую систему по топологии on-line. Я имею в виду фирму АРС и ее массив электропитания Simmetra (Сети и системы связи. 1997. № 4. С. 132). Создатели попытались заложить в систему питания те же принципы повышения надежности, которые применяют при построении особо надежной компьютерной техники. В модульную конструкцию введена избыточность по отношению к управляющим модулям и батареям. В любом из трех выпускаемых шасси из отдельных модулей можно сформировать нужную на текущий момент систему и в будущем наращивать ее по мере надобности. Суммарная мощность самого большого шасси достигает 16 кВА. Еще рано сравнивать эту только что появившуюся систему с другими включенными в таблицу. Однако факт появления нового продукта в этом исключительно устоявшемся секторе рынка сам по себе интересен.

    Архитектура

    Суммарная выходная мощность централизованных систем бесперебойного питания может составлять от 10—20 кВА до 200—300 МВА и более. Соответственно видоизменяется и структура систем. Как правило, она включают в себя несколько источников, соединенных параллельно тем или иным способом. Аппаратные шкафы устанавливают в специально оборудованных помещениях, где уже находятся распределительные шкафы выходного напряжения и куда подводят мощные входные силовые линии электропитания. В аппаратных помещениях поддерживается определенная температура, а за функционированием оборудования наблюдают специалисты.

    Многие реализации системы питания для достижения необходимой надежности требуют совместной работы нескольких ИБП. Существует ряд конфигураций, где работают сразу несколько блоков. В одних случаях блоки можно добавлять постепенно, по мере необходимости, а в других — системы приходится комплектовать в самом начале проекта.

    Для повышения суммарной выходной мощности используют два варианта объединения систем: распределенный и централизованный. Последний обеспечивает более высокую надежность, но первый более универсален. Блоки серии EDP-90 фирмы Chloride допускают объединение двумя способами: и просто параллельно (распределенный вариант), и с помощью общего распределительного блока (централизованный вариант). При выборе способа объединения отдельных ИБП необходим тщательный анализ структуры нагрузки, и в этом случае лучше всего обратиться за помощью к специалистам.

    Применяют параллельное соединение блоков с централизованным байпасом, которое используют для повышения общей надежности или увеличения общей выходной мощности. Число объединяемых блоков не должно превышать шести. Существуют и более сложные схемы с избыточностью. Так, например, чтобы исключить прерывание подачи питания во время профилактических и ремонтных работ, соединяют параллельно несколько блоков с подключенными к отдельному ИБП входными линиями байпасов.

    Особо следует отметить сверхмощные ИБП серии 3000 фирмы Exide. Суммарная мощность системы питания, построенная на модульных элементах этой серии, может достигать нескольких миллионов вольт-ампер, что сравнимо с номинальной мощностью генераторов некоторых электростанций. Все компоненты серии 3000 без исключения построены на модульном принципе. На их основе можно создать особо мощные системы питания, в точности соответствующие исходным требованиям. В процессе эксплуатации суммарную мощность систем можно наращивать по мере увеличения нагрузки. Однако следует признать, что систем бесперебойного питания такой мощности в мире не так уж много, их строят по специальным контрактам. Поэтому серия 3000 не включена в общую таблицу. Более подробные данные о ней можно получить на Web-узле фирмы Exide по адресу http://www.exide.com или в ее московском представительстве.

    Важнейшие параметры

    Для систем с высокой выходной мощностью очень важны показатели, которые для менее мощных систем не имеют первостепенного значения. Это, например, КПД — коэффициент полезного действия (выражается либо действительным числом меньше единицы, либо в процентах), показывающий, какая часть активной входной мощности поступает к нагрузке. Разница значений входной и выходной мощности рассеивается в виде тепла. Чем выше КПД, тем меньше тепловой энергии выделяется в аппаратной комнате и, значит, для поддержания нормальных рабочих условий требуется менее мощная система кондиционирования.

    Чтобы представить себе, о каких величинах идет речь, рассчитаем мощность, "распыляемую" ИБП с номинальным значением на выходе 8 МВт и с КПД, равным 95%. Такая система будет потреблять от первичной силовой сети 8,421 МВт — следовательно, превращать в тепло 0,421 МВт или 421 кВт. При повышении КПД до 98% при той же выходной мощности рассеиванию подлежат "всего" 163 кВт. Напомним, что в данном случае нужно оперировать активными мощностями, измеряемыми в ваттах.

    Задача поставщиков электроэнергии — подавать требуемую мощность ее потребителям наиболее экономным способом. Как правило, в цепях переменного тока максимальные значения напряжения и силы тока из-за особенностей нагрузки не совпадают. Из-за этого смещения по фазе снижается эффективность доставки электроэнергии, поскольку при передаче заданной мощности по линиям электропередач, через трансформаторы и прочие элементы систем протекают токи большей силы, чем в случае отсутствия такого смещения. Это приводит к огромным дополнительным потерям энергии, возникающим по пути ее следования. Степень сдвига по фазе измеряется не менее важным, чем КПД, параметром систем питания — коэффициентом мощности.

    Во многих странах мира существуют нормы на допустимое значение коэффициента мощности систем питания и тарифы за электроэнергию нередко зависят от коэффициента мощности потребителя. Суммы штрафов за нарушение нормы оказываются настольно внушительными, что приходится заботиться о повышении коэффициента мощности. С этой целью в ИБП встраивают схемы, которые компенсируют сдвиг по фазе и приближают значение коэффициента мощности к единице.

    На распределительную силовую сеть отрицательно влияют и нелинейные искажения, возникающие на входе блоков ИБП. Почти всегда их подавляют с помощью фильтров. Однако стандартные фильтры, как правило, уменьшают искажения только до уровня 20—30%. Для более значительного подавления искажений на входе систем ставят дополнительные фильтры, которые, помимо снижения величины искажений до нескольких процентов, повышают коэффициент мощности до 0,9—0,95. С 1998 г. встраивание средств компенсации сдвига по фазе во все источники электропитания компьютерной техники в Европе становится обязательным.

    Еще один важный параметр мощных систем питания — уровень шума, создаваемый такими компонентами ИБП, как, например, трансформаторы и вентиляторы, поскольку их часто размещают вместе в одном помещении с другим оборудованием — там где работает и персонал.

    Чтобы представить себе, о каких значениях интенсивности шума идет речь, приведем для сравнения такие примеры: уровень шума, производимый шелестом листвы и щебетанием птиц, равен 40 дБ, уровень шума на центральной улице большого города может достигать 80 дБ, а взлетающий реактивный самолет создает шум около 100 дБ.

    Достижения в электронике

    Мощные системы бесперебойного электропитания выпускаются уже более 30 лет. За это время бесполезное тепловыделение, объем и масса их сократились в несколько раз. Во всех подсистемах произошли и значительные технологические изменения. Если раньше в инверторах использовались ртутные выпрямители, а затем кремниевые тиристоры и биполярные транзисторы, то теперь в них применяются высокоскоростные мощные биполярные транзисторы с изолированным затвором (IGBT). В управляющих блоках аналоговые схемы на дискретных компонентах сначала были заменены на цифровые микросхемы малой степени интеграции, затем — микропроцессорами, а теперь в них установлены цифровые сигнальные процессоры (Digital Signal Processor — DSP).

    В системах питания 60-х годов для индикации их состояния использовались многочисленные аналоговые измерительные приборы. Позднее их заменили более надежными и информативными цифровыми панелями из светоизлучающих диодов и жидкокристаллических индикаторов. В наше время повсеместно используют программное управление системами питания.

    Еще большее сокращение тепловых потерь и общей массы ИБП дает замена массивных трансформаторов, работающих на частоте промышленной сети (50 или 60 Гц), высокочастотными трансформаторами, работающими на ультразвуковых частотах. Между прочим, высокочастотные трансформаторы давно применяются во внутренних источниках питания компьютеров, а вот в ИБП их стали устанавливать сравнительно недавно. Применение IGBT-приборов позволяет строить и бестрансформаторные инверторы, при этом внутреннее построение ИБП существенно меняется. Два последних усовершенствования применены в ИБП серии Synthesis фирмы Chloride, отличающихся уменьшенным объемом и массой.

    Поскольку электронная начинка ИБП становится все сложнее, значительную долю их внутреннего объема теперь занимают процессорные платы. Для радикального уменьшения суммарной площади плат и изоляции их от вредных воздействий электромагнитных полей и теплового излучения используют электронные компоненты для так называемой технологии поверхностного монтажа (Surface Mounted Devices — SMD) — той самой, которую давно применяют в производстве компьютеров. Для защиты электронных и электротехнических компонентов имеются специальные внутренние экраны.

    ***

    Со временем серьезный системный подход к проектированию материальной базы предприятия дает значительную экономию не только благодаря увеличению срока службы всех компонентов "интегрированного интеллектуального" здания, но и за счет сокращения расходов на электроэнергию и текущее обслуживание. Использование централизованных систем бесперебойного питания в пересчете на стоимость одного рабочего места дешевле, чем использование маломощных ИБП для рабочих станций и даже ИБП для серверных комнат. Однако, чтобы оценить это, нужно учесть все факторы установки таких систем.

    Предположим, что предприятие свое помещение арендует. Тогда нет никакого смысла разворачивать дорогостоящую систему централизованного питания. Если через пять лет руководство предприятия не намерено заниматься тем же, чем занимается сегодня, то даже ИБП для серверных комнат обзаводиться нецелесообразно. Но если оно рассчитывает на то, что производство будет держаться на плаву долгие годы и решило оснастить принадлежащее им здание системой бесперебойного питания, то для выбора такой системы нужно воспользоваться услугами специализированных фирм. Сейчас их немало и в России. От этих же фирм можно получить информацию о так называемых системах гарантированного электропитания, в которые включены дизельные электрогенераторы и прочие, более экзотические источники энергии.

    Нам же осталось рассмотреть лишь методы управления ИБП, что мы и сделаем в одном из следующих номеров нашего журнала

    [ http://www.ccc.ru/magazine/depot/97_07/read.html?0502.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > ИБП для централизованных систем питания

  • 9 теория массового обслуживания

    1. theory of waiting lines
    2. queueing theory

     

    теория массового обслуживания

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    теория массового обслуживания
    Раздел исследования операций, который рассматривает разнообразные процессы в экономике, а также в телефонной связи, здравоохранении и других областях как процессы обслуживания, т.е. удовлетворения каких-то запросов, заказов (например, обслуживание кораблей в порту — их разгрузка и погрузка, обслуживание токарей в инструментальной кладовой цеха — выдача им резцов, обслуживание клиентов в прачечной — стирка белья и т.д.). При всем разнообразии эти процессы имеют общие черты: требования на обслуживание нерегулярно (случайно) поступают на «канал обслуживания» (место у причала, окно в раздаточной) и в зависимости от его занятости, продолжительности обслуживания и других факторов образуют очередь требований. Т.м.о. изучает статистические закономерности поступления требований и на этой основе вырабатывает решения, т.е. такие характеристики, при которых затраты времени на ожидание в очереди, с одной стороны, и на простой каналов обслуживания — с другой, были бы наименьшими. Всю систему производства и потребления товаров можно трактовать как систему массового обслуживания, где встречаются люди (клиенты) и товары. Некоторые ученые делают из этого весьма широкие выводы. Они склонны рассматривать сумму потерь времени на ожидание в очередях и на простои каналов обслуживания (хранение товаров на складах) как меру эффективности изучаемой экономической системы: чем меньше потери, тем выше эффективность. Следует сказать и о терминах «Т.м.о.» и «теория очередей«. Во многих работах они трактуются как равнозначные, в других — теория очередей рассматривается лишь как раздел Т.м.о., поскольку последней изучаются системы не только с очередями, но и с отказами (например, когда телефонная станция занята, очередь абонентов не образуется), а также некоторые иные. См. также: Блок обслуживания, Время обслуживания, Время ожидания обслуживания, Входящий поток, Дисциплина обслуживания, Задачи массового обслуживания, Заявка, Канал обслуживания, Механизм обслуживания, Многоканальная система массового обслуживания, Многофазная система массового обслуживания, Поток требований (заявок), Пункт обслуживания.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > теория массового обслуживания

См. также в других словарях:

  • МЕХАНИЗМ РЕАКЦИИ — Понятие используется в осн. в двух смыслах. Для сложных реакций, состоящих из неск. стадий, М. р. это совокупность стадий, в результате к рых исходные в ва превращаются в продукты. Для простой р ции (элементарной р ции, элементарной стадии), к… …   Химическая энциклопедия

  • ФОТОПРОВОДИМОСТЬ — фоторезистивный эффект, увеличение электропроводности полупроводника под действием электромагн. излучения. Впервые Ф. наблюдалась в Se У. Смитом (США) в 1873. Обычно Ф. обусловлена увеличением концентрации подвижных носителей заряда под действием …   Физическая энциклопедия

  • Credit Enhancement — (механизм повышения кредитного качества) инструмент или механизм, который позволяет повысить кредитное качество денежного потока от одного или более активов; элементы структуры в секьюритизации, призванные обеспечить защиту инвесторов от потерь… …   Ипотека. Словарь терминов

  • Биржевой рынок — (Stock market) Биржевой рынок это рынок определенных финансовых инструментов имеющий регламентированные правила для осуществления биржевых сделок Биржевой рынок, виды биржевых рынков описание и общие понятия Содержание >>>>>>>>>> …   Энциклопедия инвестора

  • Диверсификация — (Diversification) Диверсификация это инвестиционный подход направленный на снижение финансовых рынков Понятие, основные методы и цели диверсификации производства, бизнеса и финансовых рисков на валютных, фондовых и сырьевых рынках Содержание… …   Энциклопедия инвестора

  • Валютная система — (Monetary system) Валютная система это правовая форма организации валютных отношений Валютная система: Ямайская, Европейская, Бреттон Вудская, Парижская, Генуэзская, Российская Содержание >>>>>>>>>> …   Энциклопедия инвестора

  • Фьючерс — (Futures) Фьючерс это срочный биржевой контракт на покупку рыночного актива Что такое фьючерс, фьючерсный контракт, рынок фьючерсов, торговля фьючерсами, стратегия фьючерс, виды ценных бумаг на фьючерсном рынке, хеджирование рисков с помощью… …   Энциклопедия инвестора

  • Валютный рынок Форекс — (Forex) Валютный рынок Форекс это международный валютный рынок Валютный рынок Форекс: аналитика, прогнозы, курсы валют, трейдеры и советники Содержание >>>>>>>>>>>> …   Энциклопедия инвестора

  • Спрос — (Demand) Определение спроса, рынок и закон спроса Определение спроса, рынок и закон спроса, факторы изменения спроса Содержание Содержание Определение Понятие спроса, его эластичность Величина спроса и спроса Кривые спроса Факторы изменения и… …   Энциклопедия инвестора

  • метод — метод: Метод косвенного измерения влажности веществ, основанный на зависимости диэлектрической проницаемости этих веществ от их влажности. Источник: РМГ 75 2004: Государственная система обеспечения еди …   Словарь-справочник терминов нормативно-технической документации

  • Тяжелый танк "Пантера" — ИСТОРИЯ СОЗДАНИЯ          Пантера безусловно один из наиболее известных тяжелых танков, принимавших участие во второй мировой войне. Катализатором создания этой непредусмотренной в системе танкового вооружения вермахта боевой машины стал… …   Энциклопедия техники

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»